Variable selection for general index models via sliced inverse regression

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Variable Selection for General Index Models via Sliced Inverse Regression

Variable selection, also known as feature selection in machine learning, plays an important role in modeling high dimensional data and is key to data-driven scientific discoveries. We consider here the problem of detecting influential variables under the general index model, in which the response is dependent of predictors through an unknown function of one or more linear combinations of them. ...

متن کامل

Sliced Inverse Regression with Variable Selection and Interaction Detection

Variable selection methods play important roles in modeling high dimensional data and are keys to data-driven scientific discoveries. In this paper, we consider the problem of variable selection with interaction detection under the sliced inverse index modeling framework, in which the response is influenced by predictors through an unknown function of both linear combinations of predictors and ...

متن کامل

Reference curves estimation via Sliced Inverse Regression

In order to obtain reference curves for data sets when the covariate is multidimensional, we propose a new methodology based on dimension-reduction and nonparametric estimation of conditional quantiles. This semiparametric approach combines sliced inverse regression (SIR) and a kernel estimation of conditional quantiles. The convergence of the derived estimator is shown. By a simulation study, ...

متن کامل

Localized Sliced Inverse Regression

We developed localized sliced inverse regression for supervised dimension reduction. It has the advantages of preventing degeneracy, increasing estimation accuracy, and automatic subclass discovery in classification problems. A semisupervised version is proposed for the use of unlabeled data. The utility is illustrated on simulated as well as real data sets.

متن کامل

Student Sliced Inverse Regression

Sliced Inverse Regression (SIR) has been extensively used to reduce the dimension of the predictor space before performing regression. SIR is originally a model free method but it has been shown to actually correspond to the maximum likelihood of an inverse regression model with Gaussian errors. This intrinsic Gaussianity of standard SIR may explain its high sensitivity to outliers as observed ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: The Annals of Statistics

سال: 2014

ISSN: 0090-5364

DOI: 10.1214/14-aos1233